MATH 2028 - Multiple Integrals on rectangles
GOAL: Define the (Riemann) integral $\int_{R} f$ for a multi-variable function $f: R \rightarrow \mathbb{R}$ defined on a rectangle $R \subseteq \mathbb{R}^{n}$ \& study their basic properties

Recall: Integration of $f:[a, b] \rightarrow \mathbb{R}$
 (signed) area under curve

$$
=\int_{a}^{b} f(x) d x
$$

Idea: Approximation by "rectangles" from above and below, then take a "limit".

Remark: This idea works in any dimension. as long as we know how to define the "volume" of a "rectangle" in \mathbb{R}^{n}.

Def: A subset $R \subseteq \mathbb{R}^{n}$ is a rectangle if

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

for some real numbers $a_{i}<b_{i}, i=1, \ldots, n$.
The volume of a rectangle R is define as:

$$
\operatorname{Vol}(R):=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right)
$$

To carry out the approximations, we need to "partite" a rectangle $R \subseteq \mathbb{R}^{n}$ into small subrectangles. We first do it for $n=1$, where the notations are much simpler.

Graph of $f:[a, b] \rightarrow \mathbb{R}$
"Upper sum"

"partition" P

$$
u(f, P)=\operatorname{Area}(\square \square)
$$

"Lower sum"

$$
L(f . O)=\operatorname{Area}(\square \square]
$$

Note: For ANY partition 10 .

$$
L(f, \sigma) \leqslant \int_{a}^{b} f \leqslant u(f, \sigma)
$$

Def: Let $R=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right] \subseteq \mathbb{R}^{n}$.
Suppose there is a partition of each $\left[a_{i}, b_{i}\right]$, $i=1 . \ldots, n$. into sub-intevals:

$$
a_{i}=x_{i, 0}<x_{i, 1}<\cdots<x_{i, k_{i}}=b_{i}
$$

Then, we say that $P=\left\{R_{i, i_{2} \ldots i_{n}}\right\}$ is a partition of R into sub-rectangles

$$
\begin{gathered}
R_{i_{1} i_{2} \ldots i_{n}}:=\left[x_{1, i_{1}-1}, x_{1, i_{1}}\right] \times\left[x_{2, i_{2}-1}, x_{2, i_{2}}\right] \times \cdots \\
\times \cdots \times\left[x_{n, i_{n}-1}, x_{n, i_{n}}\right]
\end{gathered}
$$

Given any bounded $f: R \longrightarrow \mathbb{R}$, we define the upper sum and lower sum of f w.r.t. F respectively by:

$$
\begin{aligned}
U(f, O) & =\sum_{i_{1}, \ldots i_{n}} \sup _{x \in R_{i_{1} \ldots i_{n}} f(x)} \operatorname{Vol}\left(R_{i_{1} \ldots i_{n}}\right) \\
L(f, \nabla) & =\sum_{i_{1}, \ldots i_{n}} \inf _{x \in R_{i_{1} \ldots i_{n}} f(x)} f \operatorname{Vol}\left(R_{i_{1} \ldots i_{n}}\right)
\end{aligned}
$$

Remark: The sup \& inf exist since f is bounded.

Note that the upper and lower sums of f depends on the partition P. The following notion is useful when one wants to compare two different partitions.

Def n: Let P be a partition of a rectangle R. A refinement of P is another partition P^{\prime} of R st. $\forall Q^{\prime} \in \Gamma^{\prime}, \exists Q \in P$ sit. $Q^{\prime} \subseteq Q$.

Example:

a partition P of

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]
$$

 a refinement P^{\prime} of the partition

Easy Fact: Given any two partitions $P . P^{\prime}$ of R.
\exists a partition $P^{\prime \prime}$ of R which is a refinement for both P and P^{\prime}. We call such $P^{\prime \prime} a$ common refinement of P and P^{\prime}.

Remark: The set of partitions of R forms a "partially ordered set"

Lemma: If P^{\prime} is a refinement of P, then

$$
L\left(f, P^{\prime}\right) \leqslant L\left(f, P^{\prime}\right) \leqslant u\left(f, P^{\prime}\right) \leqslant u(f, \odot)
$$

Proof: Write $P=\{Q\}$ and $P^{\prime}=\left\{Q^{\prime}\right\}$.
From definition. for each rectangle $Q \in P$.

$$
\exists Q_{1}^{\prime}, \ldots . Q_{r}^{\prime} \in P^{\prime} \text { s.t. } Q=Q_{1}^{\prime} \cup \ldots \cup Q_{r}^{\dot{p}}
$$

By def" of infimum, we have for $i=1, \ldots, r$.

$$
\inf _{x \in Q} f(x) \cdot \operatorname{vol}\left(Q_{i}^{\prime}\right) \leq \inf _{x \in Q_{i}^{\prime}} f(x) \cdot \operatorname{vol}\left(Q_{i}^{\prime}\right)
$$

Summing over i, as $\operatorname{vol}(Q)=\sum_{i=1}^{r} \operatorname{vol}\left(Q_{i}^{i}\right)$.

$$
\inf _{x \in Q} f(x) \cdot \operatorname{Vol}(Q) \leqslant \sum_{i=1}^{r} \inf _{x \in Q_{i}} f(x) \cdot \operatorname{Vol}\left(Q_{i}^{\prime}\right)
$$

Summing over all $Q \in O_{0}$, we obtain

$$
L(f, P) \leq L\left(f, P^{\prime}\right)
$$

Similarly. $U(f, P) \geqslant U\left(f, P^{\prime}\right)$ since we have

$$
\sup _{x \in Q} f(x) \geqslant \sup _{x \in Q_{i}^{\prime}} f(x) .
$$

Lemma: For any partitions $P^{\prime}, \rho^{\prime}$ of R.

$$
L(f, P) \leqslant u\left(f, \sigma^{\prime}\right)
$$

Proof: Take any common refinement $P^{\prime \prime}$ of P and F^{\prime}. By previous lemma.

$$
L(f, \nabla) \leqslant L\left(f, P^{\prime \prime}\right) \leq u\left(f, \nabla^{\prime \prime}\right) \leq u\left(f, \nabla^{\prime}\right)
$$

-

This lemma implies that for any bold $f: R \rightarrow \mathbb{R}$. we always have

$$
\sup _{p} L(f, p) \leqslant \inf _{p} u(f, p)
$$

We are mostly interested in the "equality" case.

Def n: A bounded function $f: R \rightarrow \mathbb{R}$ is (Riemann) integrable on a rectangle $R \subseteq \mathbb{R}^{n}$ if

$$
\sup _{p} L(f, p)=\inf _{p} u(f, \rho)
$$

The common value, denoted by $\int_{R} f d V$. is called the integral of f over R.

Example: (Constant functions)
Let $f: R \rightarrow \mathbb{R}$ be a constant function defined on a rectangle $R \subseteq \mathbb{R}^{n}$, ie., $\exists \subset \in \mathbb{R}$ s.t. $f(x) \equiv c \quad \forall x \in R$

Then. f is integrable on R and

$$
\int_{R} f d V=C \cdot V_{01}(R)
$$

Proof: For ANY partition P of R, we have

$$
\begin{aligned}
L(f, P) & =\sum_{Q \in P} \overbrace{\inf f(x)}^{=c} \cdot \operatorname{Vol}(Q) \\
& =C \cdot \sum_{Q \in P} \operatorname{Vol}(Q)=C \cdot \operatorname{Vol}(R)
\end{aligned}
$$

Similarly, $U(f, P)=c \cdot \operatorname{Vol}(R)$
Since $L(f, P)=c \cdot \operatorname{Vol}(R)=U(f, P)$
for ALL partition ρ, by def n, f is integrable on R with $\int_{R} f d V=C \cdot V_{0}(R)$

Example: (A nowhere continuous function)
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bod function sit.

$$
f(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q} \cap[a, b] \\ 0 . & \text { if } x \in[a, b] \backslash \mathbb{Q}\end{cases}
$$

Then. f is NOT integrable on $[a, b]$.
Proof: Recall that Q and \mathbb{Q}^{c} are both dense in \mathbb{R}. For $A N Y$ partition P of $[a, b]$.

$$
\begin{aligned}
& L(f, O)=\sum_{Q \in O} \overbrace{\inf _{x \in Q} f(x)}^{=0} \cdot \operatorname{vol}(Q)=0 \\
& U(f, O)=\sum_{Q \in P} \sup _{x \in Q}^{=1} f(x) \cdot \operatorname{vol}(Q)=b-a
\end{aligned}
$$

Therefore.

$$
\sup _{\rho} L(f, P)=0<b-a=\inf _{\rho} u(f, P)
$$

and hence f is NOT integrable on [abb].
o

Ex: Find a bold function $f: R \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is Not integrable over R.

