MATH 2028 - Multiple Integrals on rectangles

GOAL: Define the (Riemann) integral $\int_{R} f$ for a multi-variable function $f: R \rightarrow iR$ defined on a rectangle $R \subseteq iR^n$ & study their basic properties

<u>Recall</u>: Integration of $f: [a,b] \rightarrow \mathbb{R}$

<u>Remark</u>: This idea works in any dimension, as long as we know how to define the "Volume" of a "rectangle" in \mathbb{R}^n . $\underline{Def^{n}}: A \text{ subset } R \subseteq iR^{n} \text{ is a rectangle if}$ $R = [a_{1}, b_{1}] \times [a_{2}, b_{2}] \times \dots \times [a_{n}, b_{n}]$ for some real numbers $a_{1} < b_{1}$, $i = 1, \dots, n$.
The volume of a rectangle R is define as: $Vol(R) := (b_{1} - a_{1})(b_{2} - a_{2}) \cdots (b_{n} - a_{n})$

To carry out the approximations, we need to "partite" a rectangle $R \in \mathbb{R}^n$ into small subrectangles. We first do it for n=1, where the notations are much simpler.

 Def^{n} : Let $R = [a_1, b_1] \times ... \times [a_n, b_n] \subseteq i\mathbb{R}^{n}$. Suppose there is a partition of each [ai, bi], i=1..., N. into sub-interals: $a_i = X_{i,0} < X_{i,1} < \dots < X_{i,k_i} = b_i$ Then, we say that $P = \{R_{i,i_2\cdots i_n}\}$ is a partition of R into sub-rectangles $R_{i_1i_2\cdots i_n} := [X_{i_1i_1\cdots i_n}X_{i_1i_1}] \times [X_{2,i_2\cdots i_n}X_{2,i_2}] \times \cdots$ $\times \cdots \times [\times_{n,i_{n-1}}, \times_{n,i_{n}}]$ Given any bounded f: R -> iR, we define the upper sum and lower sum of f w.r.t. P respectively by : $\mathcal{U}(f, \mathbf{O}) := \sum \operatorname{Sup} f(x) \cdot \operatorname{Vol}(R_{i,\dots,i_n})$ i....in XERi...in V $L(f, \Theta) := \sum \inf f(x) \cdot Vol(R_{i,\dots,i_n})$ i.....in XERi....in

Remark: The sup & inf exist since f is bounded.

Note that the upper and lower sums of fdepends on the partition P. The following notion is useful when one wants to compare two different partitions.

<u>Def</u>¹: Let \mathcal{P} be a partition of a rectangle \mathcal{R} . A refinement of \mathcal{P} is another partition \mathcal{P}' of \mathcal{R} s.t. $\forall \ Q' \in \mathcal{P}'$. $\exists \ Q \in \mathcal{P}$ s.t. $\ Q' \subseteq Q$.

Easy Fact: Given any two partitions
$$\mathcal{P}$$
, \mathcal{P}' of \mathcal{R}
 \exists a partition \mathcal{P}'' of \mathcal{R} which is a refinement
for both \mathcal{P} and \mathcal{P}' . We call such \mathcal{P}'' a
common refinement of \mathcal{P} and \mathcal{P}' .
Remark: The set of partitions of \mathcal{R} forms a
"partially ordered set"
Lemma: If \mathcal{P}' is a refinement of \mathcal{P} , then
 $L(f, \mathcal{P}) \in L(f, \mathcal{P}') \leq U(f, \mathcal{P}') \leq U(f, \mathcal{P})$
Proof: Write $\mathcal{P} = \{Q\}$ and $\mathcal{P}' = \{Q'\}$.
From definition, for each rectangle $Q \in \mathcal{P}$.
 $\exists Q'_{1},...,Q'_{r} \in \mathcal{P}'$ st. $Q = Q'_{1} \cup \cdots \cup Q'_{r}$
By def! of infimum, we have for $i=1,...,T$,
 $\inf_{r \in Q} f(x) \cdot Vol(Q'_{r}) \leq \inf_{r \in Q'_{r}} Vol(Q'_{r})$
Summing over i . as $Vol(Q) = \sum_{i=1}^{r} Vol(Q'_{i})$.
 $\inf_{r \in Q} f(x) \cdot Vol(Q) \leq \sum_{i=1}^{r} \inf_{r \in Q'_{r}} f(x) \cdot Vol(Q'_{r})$

Summing over all Q & P. we obtain $L(f, \mathbb{P}) \in L(f, \mathbb{P})$ Similarly, U(f, P) > U(f, P) since we have $\sup_{x \in Q} f(x) \geqslant \sup_{x \in Q_i} f(x)$. Lemma: For any partitions P. P' of R. $L(f, \mathcal{P}) \leq U(f, \mathcal{P})$ Proof: Take any common refinement P" of P and P'. By previous lemma. $L(f, \mathbb{P}) \in L(f, \mathbb{P}') \in \mathcal{U}(f, \mathbb{P}') \leq \mathcal{U}(f, \mathbb{P}).$ This lemma implies that for any bdd f: R -> iR. we always have $Sup L(f.P) \leq \inf \mathcal{U}(f.P)$ \mathcal{P} We are mostly interested in the "equality" case.

Def: A bounded function f: R -> iR is (Riemann) integrable on a rectangle RS Rⁿ $Sup L(f.P) = \inf U(f,P)$ it P The common value, denoted by SfdV. is called the integral of f over R. Example : (Constant functions) Let $f: R \rightarrow R$ be a constant function defined on a rectangle $R \subseteq \mathbb{R}^n$, i.e., $\exists C \in \mathbb{R}$ $f(x) \equiv c \quad \forall x \in R$ s.t. Then, f is integrable on R and $\int f dv = C \cdot Vol(R)$ Proof: For ANY partition P of R, we have $L(f, \mathcal{O}) = \sum_{Q \in \mathcal{O}} \inf_{x \in Q} f(x) \cdot Vol(Q)$ $= C \cdot \sum_{Q \in P} V_0(Q) = C \cdot V_0(R)$

Similarly,
$$U(f, \mathcal{P}) = c \cdot Vol(R)$$

Since $L(f, \mathcal{P}) = c \cdot Vol(R) = U(f, \mathcal{P})$
for ALL partition \mathcal{P} , by def², f is
integrable on R with $\int f dV = c \cdot Vol(R)$
R
Example: (A nownere continuous function)
Let $f: [a,b] \rightarrow R$ be a bdd function sit.
 $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \ a \ (a,b) \end{cases}$
Then, $f \text{ is } NoT$ integrable on $[a,b]$.
Proof: Recall that \mathbb{Q} and \mathbb{Q}^{c} are both dense
in R. for ANY partition \mathcal{P} of $[a,b]$,
 $L(f,\mathcal{P}) = \sum_{Q \in \mathcal{P}} \sup_{x \in Q} f(x) \cdot Vol(Q) = D$
 $U(f,\mathcal{P}) = \sum_{Q \in \mathcal{P}} \sup_{x \in Q} f(x) \cdot Vol(Q) = b - a$

Therefore,

Sup $L(f, \mathcal{P}) = 0 < b - a = \inf \mathcal{U}(f, \mathcal{P})$ \mathcal{P} and hence f is NOT integrable on [a.b].

Ex: Find a bold function f: R⊆R² → R which is NOT integrable over R.